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Summary

Efficient network management can improve the network performance and reduce the cost of system maintenance
and administration. One of the important duties assigned to the network management system in a infrastructure
wireless LAN (or simply wireless LAN) is to assign users to appropriate accessible access points (APs). The
current AP selection schemes in wireless LANs cause an unbalanced load, which in turn reduces the performance
of individual users. This has motivated intensive studies attempting to determine efficient methods to balance loads
among different APs. Existing works either provide heuristic solutions without performance guarantees or provide
centralized solutions which are not desirable for the AP selection problem. In this paper, we study the localized
solutions that can provide performance guarantees. We model the AP selection problem as a matching problem in
bipartite graph. Our objective is to maximize total load among all APs. We propose a class of localized heuristics
based on different user knowledge models. For some of these localized heuristics, we prove that there exists a constant
approximation ratio in terms of expected total load through mathematical analysis. Simulations are conducted to
verify our results. Copyright © 2009 John Wiley & Sons, Ltd.
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1. Introduction

With the proliferation of wireless LANs, users can
easily obtain access to multiple APs. One of the
important duties assigned to the network management
system in a wireless LAN is to assign users to
appropriate accessible access points (APs). Currently,
most of the IEEE 802.11 protocols adopt the received
signal strength indicator (RSSI)-based approach in
order to select an AP to affiliate with. Previous
works [1–3] have shown that the RSSI-based approach
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can lead to poor performance in terms of the total
load. To address this problem, existing works [1,3]
have proposed numerous approaches. All of them
are essentially various AP access control schemes.
Most of these approaches were evaluated through
simulations or experiments on test beds. To the
best of our knowledge, there are only two types of
algorithms that provide performance guarantees. One
is based on the linear programming (LP) approach
[4], and the other is based on the simulated annealing
technique [5].
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However, the LP-based approach is centralized,
which cannot adapt to the self-organized wireless
LANs. Although the simulated annealing technique
and the primal-dual scheme (derived from the LP) can
be implemented in a localized manner, both of them
require the propagation of global information and a
large number of rounds in order to converge. This is
not desirable for an environment with a highly dynamic
user population. Therefore, we propose a set of
purely localized algorithms that provide performance
guarantees and do not require the propagation of global
information.

In these localized algorithms, we consider two
factors that can affect the performance of the AP
selection problem: the knowledge of wireless users
and the timing of the AP selection for different users.
We model the AP selection problem as a many-to-one
matching problem in the bipartite graph, where each
user can connect to only one AP, while an AP can
be connected to multiple users. The objective of our
problem is to maximize the network-wide throughput,
i.e., the total load on all APs. Although it is well
known that optimal bipartite matching can be computed
in polynomial time, the polynomial-time algorithms
require either a centralized node to execute, or the
propagation of global information.

We first consider the case that all users have the
same demand. In this case, the system objective can be
reduced to the total number of users whose demands are
satisfied. In the case of the homogenous user demand,
we first consider the localized solution to the special
case, 1–1 matching, i.e., one user matched to one AP,
and extend the results to many-to-one matching. In 1–1
matching, we consider three types of user knowledge
models separately. In each user knowledge model,
we further explore the effect of the order in which
users select their APs. For each case, we propose a
localized heuristic. Then, we extend the results from 1–
1 matching model to the many-to-one matching model.
We then consider the case that users have different
demands. We consider our localized algorithms in two
more realistic environments: (1) taking into account the
effect of interference by incorporating an interference
model and (2) adjusting the localized algorithm for use
within a dynamical population where users can join
and/or leave the network.

To sum up, the key contributions of our work are
as follows: (1) We fill the gap between the existing
centralized algorithms and the existing localized
heuristics by proposing a localized algorithm with a
constant average approximation ratio. (2) We study the
effect of knowledge and the time of AP selection on the

performance in terms of the total load. (3) We further
improve the performance of our localized algorithm by
proposing an iterative localized algorithm and prove
the bound of iterations. (4) We extend our localized
algorithm to handle various dynamic environments and
more realistic network settings. (5) We evaluate our
algorithms through extensive simulations.

The remainder of this paper is organized as follows.
Section 2 introduces models and notations, and
formalizes the problem. In Section 3, we study the
1–1 matching problem from the angle of three types
of user knowledge models and two different orders
of the AP selection. Section 4 extends our results to
the many-to-one matching problem. Section 5 further
extends our work to the heterogenous user demand.
Section 6 empirically evaluates performance through
our customized simulator. Section 7 presents related
works. Finally, Section 8 concludes this work and
outlines our future work. Proof of all results appear
in the Appendix.

2. Preliminaries

2.1. The Network Model

A set of APs and a set of wireless users compose a
wireless LAN. We adopt A to denote the set of APs.
Each AP has a fixed transmission range and can only
serve users within its range. The coverage area of the
wireless network consists of the union of the area
covered by each AP in A. We use U to denote the set
of wireless users that reside in the coverage area of
the network. In order to access the wireless network,
each user has to connect to an AP. We assume that
the wireless users are free to move but they tend to
stay in the same physical location for a long period of
time. This assumption is backed up by recent studies
of wireless user behavior [6,7].

We model the network as a bipartite graph (A ∪
U, E), where E ⊆ A × U is the set of links connecting
users to APs. There is a link between an AP and a user
if and only if the user is within the range of the AP.
We call the user the AP’s neighbor user and the AP the
user’s neighbor AP. We use ui and aj to denote user
i and AP j, respectively. We consider that two users
are neighbors if and only if they are within the range
of the same AP. The strategy that a user can employ
to select an AP depends on the knowledge that user
has. The basic information for a user is the information
about his neighbor AP. Without this information, a user
can do nothing. We define this type of information

Copyright © 2009 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. (2009)

DOI: 10.1002/wcm



LOCALIZED ACCESS POINT SELECTION

a
1u

4a
u2

a

5

9

7

2

8

63

u

u
u

u

a13

4

5

6

a
a

a

a

a

Fig. 1. The graph constructed according to u1’s 1.5-hop
information.

as 0.5-hop knowledge. Besides that, we consider 1-
hop knowledge and 1.5-hop knowledge. A user’s 1-
hop knowledge includes his 0.5-hop knowledge and
information about his neighbor users. A user’s 1.5-
hop knowledge contains his 1-hop knowledge plus the
neighbor APs of his neighbor users. For example, in
Figure 1, where users are represented by crossed and
APs are represented by circles, u1’s 0.5-hop knowledge
includes APs a1 and a2, u1’s 1-hop knowledge further
contains user ui (i = 2, 3, 4, 5, 6), and u1’s 1.5-hop
knowledge includes all APs and users in Figure 1.

The reason that we consider 1-hop knowledge and
the 1.5-hop knowledge models is that the 0.5-hop
knowledge alone is not useful enough to help users self-
distribute the load among APs. To make the collection
of the 1-hop knowledge practical, we can integrate the
collection of the 1-hop knowledge into the AP selection
process. In Section 5, we will see that it requires only
a simple admission control mechanism at the AP side
to implement the integration of the collection of the 1-
hop knowledge. Although the collection of the 1.5-hop
knowledge requires an additional round of information
exchange, we adopt the 1.5-hop knowledge model as a
comparison on how user knowledge can help improve
performance.

2.2. Problem Formulation

Our concern focuses on the localized solutions that
enable as many satisfied users as possible. The satisfied
users denote those users whose minimum quality
requirements are satisfied. The localized solutions
means that each user self-determines which neighbor
AP to connect to, and his decision is based on his
local information alone. To simplify the model, we
first assume that users are homogeneous, and hence,
users have the same minimum requirement to the
quality such as bandwidth, delay and etc. We will relax
this assumption later. We also assume that there is a
limitation on the capacity of each AP. If the number
of users connecting to an AP simultaneously exceeds

a certain threshold, the quality of network access will
fall under users’ minimum quality requirement.

Based on the above discussion, the AP selection
problem can be modeled as the many-to-one matching
problem in the bipartite graph. In the many-to-one
matching problem, each user can connect to only one
AP, whereas an AP can be connected by multiple users
simultaneously. The objective of this problem is to find
a matching scheme so that the number of satisfied users
is maximized. There are two major differences between
the traditional max-flow- based algorithms [8] and our
localized solutions for the bipartite matching problem:
(1) our localized solutions do not require central node
to collect global information and compute the optimal
solution accordingly; (2) our localized solutions are
non-preemptive, i.e., once a user matches an AP, this
matching is determined and other users cannot force
him to switch to other APs.

3. Solutions to the 1– 1 Matching
Problem

We first consider a special case of the many-to-
one bipartite matching problem: the 1–1 bipartite
matching problem, where at most one user is
allowed to connect to an AP, i.e., the threshold
of any AP is 1. Under each user-knowledge-model
mentioned in Section 2, we consider two different
AP-selection orders: simultaneous connection and
sequential connection.

3.1. The 0.5-hop Knowledge Model

The existing 802.11 based network protocols provide
the 0.5-hop knowledge through signal detection of APs
on the user side. We first consider the simultaneous
connection, where users connect to their intended APs
simultaneously.

Simultaneous connection. The schemes based on
simultaneous connection can be regarded as a
variations of the greedy method in the current 802.11
protocols, where each user connects to the neighbor AP
with the highest RSSI. In Algorithm 1, we formally

Algorithm 1 Simu-Connection (u) in 0.5-hop Model

Initialize the set of neighbor APs Nu ←
{a1, a2, · · · , ak}

1: Calculate p(aj) for every aj ∈ Nu

2: Connect to aj with probability p(aj)

Copyright © 2009 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. (2009)
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present a generic user strategy for simultaneous
connection in the 0.5-hop knowledge model. Without
loss of generality, we assume user u has k neighbor APs
denoted as Nu = {a1, a2, . . . , ak}, where u connects to
aj with probability p(aj).

Different implementations of the probability calcula-
tion in the above strategy can derive different methods.
For example, by assigning probability 1 to the neighbor
AP with the highest RSSI and probability 0 to all the
other neighbor APs, the generic scheme can be reduced
to the greedy method. By assigning probability 1

k
to

each neighbor AP, the generic scheme is reduced to
the method in that each user connects to his neighbor
APs randomly with equal probability. In this generic
scheme, there exists a conflict incurred by multiple
users connecting to the same AP at the same time.
In that case, those users can reduce their connection
probabilities to reduce the conflict. For example, if
the number of users that select an AP is l, each of
those users can set his connecting probability to 1

l
. A

trade-off exists between the conflict probability and the
connection probability.

Sequential connection. To reduce the conflict
mentioned previously, we consider a back-off-based
sequential-connection scheme. In the sequential-
connection scheme, users that compete for the same
AP in the simultaneous connection can reduce the
probability of conflict because they may connect to
the AP in different orders and the users that connect
later can be informed the unavailability of the AP
through acknowledgement from AP, which cause the
users to resign from competition. Note that this
information also belongs to the category of 0.5-hop
knowledge.

We assume that the time consists of multiple
continuous time units, each of which consists of l slots.
Initially, each user sets a back-off counter for each
neighbor AP. The value of the counter (in terms of
the number of time units) associated with each AP
is reversely proportional to the RSSI of the AP. The
counter of each neighbor AP will decrease by 1 for
every time unit (l slots). At the beginning of every time
unit, if any counter becomes 0, a user randomly picks
one of the l slots within the time unit to connect to
the corresponding AP. Once an AP is connected by a
user, the AP will send an acknowledgement message to
the user. By overhearing the message, all the neighbor
users of this AP will know that this AP is occupied.
Those unconnected neighbor users will remove the
AP from their neighbor AP sets. Note that we use
l slots as the basic time unit in order to control the
conflict. In the back-off scheme, it is still possible

Algorithm 2 Sequential Connection (u) in 0.5-hop
Model
Initialize the set of neighbor APs Nu ←
{a1, a2, · · · , ak}

1: Initialize back-off counter B(aj) for every aj ∈
Nu;

2: while u is unconnected and Nu is not empty do
3: if Receive ConnAck from aj then
4: Remove aj from Nu if u is not the intended

user
5: Quit the connection process if Nu is empty;
6: if all B(aj) > 0 at the beginning of a time unit

then
7: Reduce B(aj) by 1 for every aj ∈ Nu;
8: else if B(a∗) = 0 for an a∗ ∈ Nu then
9: Randomly pick one slot in the current time

unit;
10: Connect to the a∗ in the picked time slot;

that multiple users will connect to the same AP. By
setting l to a large value, the probability of conflict
can be further reduced at the cost of extended delay.
We will study the proper value of l in the experiment
study.

The formal description of the back-off-based
sequential-connection method employed by each user
is presented in Algorithm 2, where we assume that each
user initially has at least one neighbor AP, and B(aj)
is used to denote the back-off counter for neighbor
AP aj . Another possible sequential connection scheme
is to iteratively running the simultaneous connection
scheme if there exist unconnected users or unsatisfied
users. For those unsatisfied users (the users that connect
to the same AP), we assume that it takes a relatively
long time (compared with the time unit of the back-off-
based scheme) to resolve the conflict, which involves
the identification of the conflict, disconnection of all
users connected to the same AP, and re-selection
of AP.

3.2. The 1-hop Knowledge Model

Although the back-off-based sequential connection
scheme can reduce the conflict probability, it cannot
avoid conflict. In this subsection, we consider a
conflict-free heuristic based on the 1-hop knowledge
model. In the conflict-free heuristic, we assume that
each user not only knows the RSSI of each neighbor
AP, but also can obtain information whether it is the
best user. The best user to an AP denotes the user that
senses the highest RSSI among all neighbor users of

Copyright © 2009 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. (2009)

DOI: 10.1002/wcm



LOCALIZED ACCESS POINT SELECTION

Algorithm 3 SimuConnect (u) for the basic 1-hop
Model
Initialize Nu ← {a1, a2, · · · , ak}

1: Sense the RSSI Su(aj) for every aj ∈ Nu;
2: Find the best AP (the AP with the highest RSSI,

denoted as a∗);
3: Send connection request to a∗ about Su(a∗);
4: if Receive connection acknowledgement from a∗

then
5: if u is the best user with respect to a∗ then
6: Connect to a∗;

that AP. Each user only considers the neighbor AP
with the highest RSSI (the best AP), and each user
connects to his best AP only if he is also the best user to
the AP.

In the following, we integrate the collection of
the 1-hop knowledge into the conflict-free localized
heuristic: (1) each user selects the best AP; (2)
each user sends a connection request to his best
AP and attaches the corresponding RSSI; (3) after
receiving connection requests within a timeout, each
AP sends back a connection acknowledgement to the
best user; (4) only the best user will connect to his
best AP.

Unlike the greedy method in the 0.5-hop knowledge
model, where each user directly connects to his best
AP, in this localized heuristic, a user connects to his
best AP only if he is the best user with respect to
his best AP. The formal description of the heuristic
is presented in Algorithm 3, where Su(a) represent
the RSSI of a sensed by user u. Although this
heuristic is relatively straightforward, it can achieve
a constant approximation ratio under the reasonable
assumptions that the value of Su(a) is proportional
to the distance between a and u, and all the APs
and users are uniformly deployed in the coverage
area of a wireless LAN. Theorem 1 presents this

theoretical result on the average approximation ratio of
this conflict-free localized heuristic, which is the ratio
of the average number satisfied users by our heuristic to
the maximum number of satisfied users by the optimal
solution.

Theorem 1. If all the APs and users are
uniformly deployed in the coverage area, the average
approximation ratio of Algorithm 3 is at least 1 − 1

e
.

Based on the assumption that RSSI Su(a) is
proportional to the distance between AP a and user
u, we can partition the covered area into numerous
Voronoi regions, within each of which exact one AP
serves as the Voronoi point. Hence, there will be exactly
one AP in each Voronoi region. Figure 2(a) gives an
example of a Voronoi graph with six APs and eight
users. Users in each Voronoi region will only select the
AP in the same region because this AP has the highest
RSSI among all neighbor APs. Figure 2(b) shows the
AP-user matchings produced by Algorithm 3. No user
connects to a3 or a6 because no user is within their
regions.

Under the assumption that both users and APs
are uniformly distributed, the probability of overload
(occurring when the number of users within a Voronoi
region is larger than the capacity of the AP in the
same Voronoi region) is relatively small. Hence, our
localized heuristic has a high average approximation
ratio.

The above heuristic is conflict-free. Therefore, the
performance of this heuristic can be further im-
proved through iterative executions. Besides iterative
executions, increasing user and AP knowledge can
help improve performance. If we require each user
to send RSSIs to every neighbor AP instead of
the best AP alone, we can further improve the
performance. The improved algorithm for the user
side is formally described in Algorithm 4. The AP-
side algorithm is the same as that of Algorithm 3,
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Fig. 2. The example Voronoi graph with Voronoi regions centered at APs. There are six APs, represented by circles, and eight
users, represented by crossings. The AP-user matchings generated by Algorithm 3, Algorithm 4, and the iterative execution of
Algorithm 3 are shown in (b), (c), and (d), respectively. AP-user matching is represented by a link between the AP and the user.
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Algorithm 4 SimuConnect (u) for improved 1-hop
Model
Initialize Nu ← {a1, a2, · · · , ak}

1: Sense RSSI Su(aj) for every aj ∈ Nu;
2: Inform aj about Su(aj) for every aj ∈ Nu;
3: repeat
4: if Receive feedback from aj then
5: Put aj into u’s available AP set;
6: until Receive feedback from all aj or timeout
7: if the available AP set is not empty then
8: Connect to the AP with the highest RSSI among

the available AP set

i.e., an AP simply replies an acknowledge message
to his best user. Comparing Figure 2(b) and (c), we
find that one more AP-user pair can be matched
through Algorithm 4. The reason for this is that some
empty Voronoi regions (Voronoi regions without users)
can borrow users from neighboring Voronoi regions.
However, it is still possible that some AP-user pairs
cannot be matched due to insufficient knowledge.
For example, in Figure 2(c), a3 and u1 cannot be
matched since the best user of a3 is u5, which is
also the best user of a2, but u1 has no knowledge
about this. This can be solved by iteratively running
Algorithm 3.

3.3. The 1.5-hop Knowledge Model

In this subsection, we consider the model where each
user has 1.5-hop knowledge, i.e, users know not only
their neighbor users but also those neighbor users’
neighbor APs. For example, consider the example
shown in Figure 1. If u1 has 1.5-hop knowledge, he
knows not only his neighbor user u6 but also u6’s
neighbor AP a8.

To obtain this 1.5-hop knowledge, we assume that
each user needs to register at each neighbor AP
beforehand. To register at a neighbor AP, a user not
only provides his own information such as ID but also
the RSSIs of his neighbor APs. After the registrations
of all neighbor users, an AP notifies its neighbor users
through a feedback message, containing the IDs of each
neighbor user, the neighbor AP set of each neighbor
user, and the associated RSSIs.

Based on the 1.5-hop knowledge, each user can
construct a local graph for each neighbor AP. The
local graph for an AP includes the AP itself, all
of its neighbor users, and all of the neighbor APs
of those users, i.e., the 1.5-hop knowledge of this
AP. For example, Figure 3 contains two local graphs
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Fig. 3. The graphs constructed according to the knowledge
that user u1 has, as shown in Figure 1. The local graph for
a2 is the common knowledge for users u1, u2, u3, u4, and u5

(a), while the local graph for a1 is the common knowledge of
users u1, u2, u5, and u6 (b).

for u1’s two neighbor APs, a2 and a1, as shown in
Figure 3(a) and (b), respectively. An important property
of the local graph for an AP is that the local graph
is the common knowledge of the neighbor users of
the AP.

In this model, we assume that each user selects its AP
in a greedy way, i.e., a user considers his first choice,
the neighbor AP with the highest RSSI. If its first choice
is not available (i.e., connected by other users), a user
will consider its second choice, and so forth.

Simultaneous connection. We first consider simul-
taneous connection. The formal description of the
heuristic is in Algorithm 5, where user ui repeatedly
constructs the local graph for his first choice, second
choice, and so forth, until a connection can be
established between a neighbor AP and ui, or no
neighbor AP is available. Lines 1–3 represent the set of
operations that fetch the AP with the highest priority
in user ui’s priority queue, construct the local graph
for the AP if the AP exists, and find the users with
the highest priority in the local graph. To determine
whether a user can establish a connection to a neighbor

Algorithm 5 Simu-Connection (u) in the 1.5-hop
Model

1: Fetch and remove the AP with highest RSSI
(denoted as a∗) from u’s neighbor AP set;

2: Build local graph for a∗ if a∗ exists; otherwise, quit
the AP connection process;

3: Fetch and remove the user (denoted as u∗) that
senses the highest RSSI ofa∗ froma∗’s local graph;

4: while u �= u∗ do
5: Mark u∗’s status as connected;
6: Do the same operations as lines 1-3;
7: while u∗ status is connected do
8: Fetch and remove u∗ from a∗’s local graph;
9: if u = u∗ (u has the highest priority) then

10: Connect to a∗;

Copyright © 2009 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. (2009)
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AP, the user has to maintain two priority queues: one for
the neighbor APs, and the other for the neighbor users
in the corresponding local graph. The former is fixed in
the strategy, while the latter is dynamic because the user
dynamically constructs the local graph for his neighbor
APs. In the local graphs for ui’s second choice, third
choice, etc, if ui finds that the users with higher priority
has already connected to some other APs, ui will ignore
those users.

It should be noted that Algorithm 3 can be regarded
as a special case of Algorithm 5 because users in
Algorithm 3 consider the AP with the highest RSSI
alone, while users in Algorithm 5 take into account
all neighbor APs one by one in decreasing order of
their RSSIs. Therefore, the performance of Algorithm 5
should be no worse than that of Algorithm 3, and hence,
the approximation ratio of Algorithm 3 can also be
regarded as a low bound for Algorithm 5.

Although we provide additional chances for those
users who lose in the competitions for their first
choices, not every user can obtain the additional
chances that belong to him because every user has only
1.5-hop knowledge.

Sequential connection. The problem with the
simultaneous AP connection can be mitigated by
iteratively running Algorithm 5. We assume that, at the
end of each iteration, the matched user-AP pairs are the
common knowledge for their neighbor users.

4. Extension to the Many-to-One
Matching Problem

With some modifications, the localized heuristics for
the 1–1 matching problem can also be extended to the
many-to-one matching problem. For the simultaneous
AP connection in the 0.5-hop knowledge model, the
users’ strategies for the 1–1 matching and the many-
to-one matching are the same. The only difference is the
classification of the satisfied users and the unsatisfied
users. In 1–1 matching, if more than one users connect
to the same AP, all users connecting to this AP are
dissatisfied, while in many-to-one matching, a user is
unsatisfied if and only if the number of users connecting
to the same AP exceeds the AP’s threshold.

For the sequential AP connection in the 0.5-hop
knowledge model, we need to change the condition
for a user to remove an AP from his neighbor AP set.
In the 1–1 matching, the condition is that the AP is
occupied by another user. In the many-to-one matching,
it becomes that the number of users connecting to the
AP is larger than the AP’s threshold. We also need to

change the conflict condition to state that the number
of users connecting to the AP must be larger than its
threshold.

For the simultaneous AP connection in the 1-hop
knowledge model, we need to modify the condition
for a user to be able to establish a connection to a
neighbor AP. In the 1–1 bipartite matching problem,
a user is able to establish a connection to a neighbor
AP if and only if his priority is the highest among the
neighbor users of the neighbor AP. In the many-to-
one bipartite matching problem, a user can connect
to a neighbor AP if his connection will not exceed
the neighbor AP’s threshold. In Theorem 1, we have
proved that Algorithm 3 for the 1–1 bipartite matching
has a constant approximation ratio. For the many-to-
one bipartite matching problem, we also have a similar
result.

Theorem 2. If all APs and users are uniformly
deployed in the coverage area, the approximation ratio
of the one-round localized algorithm for the many-to-
one bipartite matching is at least 1 − 1

e
.

The one-round localized algorithm for the 1-hop
knowledge model can be further improved through
iterative execution. For the iterative execution, a major
concern is the convergence rate. Here, the convergence
rate is defined as the number of rounds. The fewer
the number of rounds, the higher the convergence rate.
We have the following theorem concerning the upper
bound for the convergence rate of our iterative localized
algorithm.

Theorem 3. Our iterative selection executes at most
ln l rounds, where l = min{m, n}, and m and n are the
number of users and APs, respectively.

The modification for the simultaneous AP connec-
tion in the 1.5-hop knowledge model is the same as
that for the simultaneous AP connection in the 1-hop
knowledge model.

Non-uniform user distribution. Although our theoret-
ical results are based on the assumption of the uniform
user distribution, these results also hold in stochastic
distributions other than uniform distribution. Previous
study [1] has shown that users tend to access network at
certain popular spaces (‘hot-spots’) within the network.
In our experiment study, we adopt normal distribution
to model such hot-spots. We use the user location as
random variable, and the location of those hot-spots as
the mean value of the normal distribution. According to
the guidelines [9,10], APs should be distributed based
on the number of users, the physical aspects of locations
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and etc. Thus, we adopt the normal distribution that is
identical to the user distribution to deploy APs so that
the ratio of users to APs are approximately the same.
Through experiment evaluation, we identify that both
our one-round and iterative localized algorithms still
have the property of constant approximation ratio, and
the convergence rate is still very fast.

5. Extension to Heterogenous User
Demand

In previous sections, we assumed that users have
homogenous demands by normalizing the demand of
each user to 1. In this section, we relax this assumption
by allowing users to have heterogenous demands. We
first describe the needed modifications that enable the
above localized algorithms to adapt to the case of the
heterogenous demand. Then, we evaluate our localized
algorithms in the following practical environments: (1)
APs can adjust their transmission power, (2) the effect
of interference on the AP capacity is incorporated, (3)
users randomly enter or leave the network.

5.1. Adaption to the Heterogenous User
Demand

The modifications consist of two parts: the operations
at the user side (Algorithm 6) and the operation at the
AP side (Algorithm 7). The localized algorithms for the
heterogenous-user-demand are different from those for
the homogenous-user-demand in that users estimate the
potential bandwidths of neighbor APs, and regard the
neighbor APs with higher estimated bandwidth than
their demands as their available APs. Each AP adds
users into its priority queue, and push users in the order
of their corresponding RSSIs until the demand of the
last user cannot be satisfied. Unlike Algorithm 3, which
requires the collection of the 1-hop knowledge through
one round of information exchange, Algorithms 6 and 7
implement the same function by utilizing an admission
control at the AP side, which reduces the information
collection.

If the value of user demands are discrete and can
be split, the theoretical analysis for the homogeneous
demand can be applied to the heterogenous demand
by splitting the demand from a user with D units of
demand into D users of unit demand. Therefore, for
the splittable heterogeneous demand, there also exists
a constant approximation ratio. For the non-splittable
heterogenous demand, we evaluate the performance
of our localized algorithm through experiment study.

Algorithm 6 Bandwidth-based Operations at User
Side (u)

neighbor APs Nu ← {a1, a2, · · · , ak}
1: APScan(u);
2: Find the best AP a∗ (in terms of the highest RSSI);
3: Send connection request to a∗;
4: if Receive connection acknowledgement from a∗

then
5: Connect to a∗;

APScan(u)
1: for each aj ∈ Nu do
2: Sense aj’s RSSI and estimate aj’s remaining

capacity;
3: Addaj into the available AP set ifaj’s remaining

capacity is larger than u’s request;

Algorithm 7 Bandwidth-based Operations at AP
Side (a)

1: Order the users that sends connection request to a
according to their RSSIs of a;

2: Fetch and remove the user u that has the highest
RSSI;

3: while a’s remaining capacity is larger than u’s
demand do

4: Include u into the set of users whose connection
requests are accepted;

5: Reduce a’s remaining capacity by the amount of
u’s demand;

6: Fetch and remove the user u that has the highest
RSSI from the remaining users;

7: Send connection acknowledge to the set of
accepted users;

Through simulation, we observe that our one-round
localized algorithm still has a constant approximation
ratio, and the iterative algorithm still converges fast,
with the performance approximating the optimal
solution.

5.2. Transmission Power Adjustment

In previous sections, we assumed that the transmission
power of all APs are fixed, and thus, could not be
adjusted. In this subsection, we relax this assumption.
We assume that each AP initially set its transmission
power to its maximum value. After users select their
intended APs (the APs with the highest RSSIs), each
AP can calculate the number of users that intend to
connect to it and the total amount of demands. If the
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amount of demand is larger than an AP’s capacity,
the AP will decrease its transmission power to the
extent that the amount of demands is just smaller than
or equal to its capacity. Note that by decreasing the
transmission power, an AP decreases the size of its
associated Voronoi region, which in turn decreases the
number of users that send the request to the AP.

The transmission power adjustment can be integrated
into the AP selection process as follows:

1. Initially, each AP sets its transmission power to its
maximum value, and each user sends connection
request to the AP with the highest RSSI.

2. Repeat the follow procedure until the demands from
all users are satisfied or all APs are completely
utilized:
(a) If an AP receives connection requests from

users, it accepts the requests when its remaining
capacity is larger than or equal to the total
amount of the requests. Otherwise, it sorts the
users that are connected or request to connect
in the decreasing order of their RSSIs. The AP
accepts the users as many as possible in the
decreasing order and sets its transmission power
accordingly.

(b) If a user’s demand cannot be satisfied, it marks
the AP that it has sent request as unavailable,
and tries to connect to the AP with the highest
RSSI among the remaining APs.

To reduce the number of switch among users between
different APs, we assume that a user will not switch to
another AP unless its RSSI from a new AP is improved
to a threshold value.

5.3. Incorporate Interference

In this subsection, we consider the effect of the
interference. We adopt the interference model proposed
in Reference [11], where, for a user ui that connects to
an AP aj , the signal to interference ratio (SIR) at ui is
as follows:

SIRui = Sui (aj)∑
k �=j Sui (ak)

where ak is an AP other than aj in the covered area,
and Sui (aj) is independent, exponentially distributed
random variable. The mean value of Sui (aj) is c ·
Paj/d(aj, ui)α, where Paj is the transmission power
of AP aj , d(aj, ui) is the distance between them, c is
a constant, and α = 2 or 4. We assume that reception

can occur provided the SIR exceeds a given threshold
SIRth.

The error probability of transmission from aj to ui

is given by

Prob(SIRui ≤ SIRth) = Prob(Sui (aj)

≤ SIRth
∑
k �=j

Sui (ak))

The transmission error probability can be expressed in
analytical form

errorui = 1 −
∏
k �=j

1

1 + SIRthd(aj, ui)α/d(ak, ui)α

The above analytic expression for the transmission
error probability is based on the assumption that all
APs transmit at the same power, and is derived from the
following result: Suppose z1, . . . , zn are independent
exponentially distributed random variables with means
Ezi = 1/λi, Then we have

Prob

(
z1 ≤

n∑
i=2

zi

)
= 1 −

n∏
i=2

(
1

1 + λ1/λi

)

Due to transmission error, not all packets transmitted
from AP aj can be received by user ui. We assume
that undelivered packets incur retransmissions. As
proposed in Reference [12], for any packet, the
expected number of transmissions from aj to ui is

1
1−errorui

. Since retransmissions consume bandwidth

assigned by aj , we should count the amount of bits
delivered to ui every second as the bandwidth. We
called this bandwidth as effective bandwidth. If AP aj

assigns bandwidth B to user ui, the effective bandwidth
of ui is B(1 − errorui ). By taking interference into
account, our objective turns into maximizing the total
effective bandwidth.

Through simulations, we verify that the approxima-
tion ratio still holds even when the interference is taken
into account.

5.4. Dynamic User Population

In the previous sections, we have considered the
localized algorithms for the static network topology. In
this subsection, we study dynamic environments where
users can join and/or leave the network. When a user
leaves the system, the load at the corresponding AP
decreases, potentially motivating other users to change
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their previous selection and associate with that AP.
When a user joins, he automatically selects an AP to
affiliate with.

Our objective in this subsection is to discuss the
impact of dynamic user joining and/or leaving on
the system performance. When users join or leave
the network frequently, it is desirable to design a
user selection scheme without requiring many users
to handoff to different APs, because the overhead
of handoff is non-negligible. We modify the existing
localized algorithms for static user populations by
requiring that a user will not switch to a different AP
unless the RSSI from a new AP is improved by a
threshold. In Section 6, we use simulation to investigate
the behavior of the system under a dynamic user
population. We adopt the Poisson process to simulate
the inter-arrive time as well as the service time of
users.

6. Simulation

6.1. Simulation Setup

In this section, we give an experiment evaluation
of our localized algorithms. Our concern focuses on
two metrics: the total load and convergence rate (in
terms of the number of rounds). We first consider
the case of homogeneous user demand, and then
consider the case of heterogeneous user demand.
In both cases, we compare the performance of our
one-round localized algorithm, the iterative localized
algorithm, and the optimal solution. We adopt the
Karp’s MaxFlow algorithm [8] to compute the optimal
bipartite matching. For the case of homogeneous user
demand, we first consider the localized heuristics for
the 1–1 matching model.

We simulate a stationary network with APs and users
randomly located in a 100 × 100 area. We assume all
APs are of the same type, have the same transmission
range, and can be deployed in the area arbitrarily. So are
the users. In the simulation, we consider the following
tunable parameters: (a) m, the number of users, (b) n,
the number of APs, (c) r, transmission range of APs, (d)
l, the number of slots per round in the back-off-based
heuristic, (e) c, the maximum capacity of APs (the
capacity of each AP is a random number between 1 and
c), (f) d, the user demand. In the case of homogenous
user demand, d = 1. In the case of heterogenous
user demand, d is the maximum user demands. User
demand of each user is random number ranging from 1
to d.

6.2. Simulation Results

One of the network configurations that affect the
performance of the localized heuristics is the AP
density, which can be reflected by parameters n and r.
The greater the number of APs, or the larger the
transmission ranges, the higher the AP density. The AP
density has a great impact on the performance of
the localized heuristics. In the extreme case, if the
transmission ranges are large enough so that each AP
can cover the whole area, users can connect to any AP,
and thus, the major concern is to avoid conflicts.

We consider two types of network configurations: the
low AP density and the high AP density. The AP density
can be reflected by parameters n and r. In the low AP
density network, we set n = 20 and r = 20. In the high
AP density network, we set n = 50 and r = 50. In any
experiment, the performance of the heuristic will be
compared with the optimal solution, which is from the
augmentation-path-based max-flow algorithm.

We first consider three variations of the localized
heuristic for the simultaneous AP connection in the
0.5-hop knowledge model. The three variations are
(1) the greedy method, where users connect to the
neighbor AP with the highest priority, (2) the random-
selection method, where users randomly connect to
one of neighbor APs with equal probability, and (3)
the double-random-selection method, where users first
randomly determine whether they will be connecting
to the network or not. If they determine that they will
connect to the network, they will randomly determine
which neighbor AP to connect to. In the double-
random-selection method, the probability to connect
to the network depends on the ratio of the number of
APs to the number of users. If the ratio is larger than
1, the probability of connection is 1; otherwise, the
probability is equal to the ratio. Therefore, in the case
where the number of APs is more than the number of
users, the double-random-selection method is the same
as the random-selection method.

Comparing the performance in the high AP density
network (Figure 4(b)) and that in the low AP density
network (Figure 4(a)), we find that it is easier for
the greedy method to incur conflicts in the high AP
density network. The reason is that each user has more
choices in the high AP density network. All users tend
to select the AP with the highest priority, which in
turn causes the conflicts at the AP with the highest
priority. If the number of users is much more than
the number of APs, the performance of the random-
selection method decreases dramatically, and can be
even worse than that of the greedy method. The reason
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Fig. 4. The experiment on the localized heuristics for the simultaneous AP selection in the 0.5-knowledge model. (a) Networks
with low AP density. (b) Networks with high AP density.

is that if each user insists on connecting to an AP in
the case where there are more users than the APs,
it is highly possible users will connect to the same
APs. In the greedy method, the conflicts occur at
the APs with higher priority, while in the random-
selection method, the conflicts can be anywhere.
Furthermore, we can see that the performance of
the optimal method increases dramatically in the
high AP density environment because each user can
connect to almost every AP. We can also find that the
performance of the double-random-selection method
is better than that of the random-selection method
when the number of users is larger than the number of
APs because some users do not join the competition
for APs, which mitigates the conflicts. Although
our double-random-selection implementation requires
global information, the number of users and APs, the
estimation of the bandwidth of neighbor APs can be
applied to determine the probability to connect the
network.

In the second experiment, the results of which
are shown in Figure 5, we consider the heuristics

for the 1.5-hop knowledge model. We compare
three heuristics: the aggressive simultaneous-AP-
connection heuristic (a variation of Algorithm 5,
where a user connects to his second choice in the
event that he cannot determine if it is safe to do
so without introducing conflicts), the conservative
simultaneous-AP-connection heuristic (Algorithm 5),
and the iterative heuristic based on the conservative
simultaneous-AP-connection heuristic. When the
number of users is relatively small, the aggressive
heuristic has better performance than that of the
conservative one because the probability of connecting
an unoccupied AP is relatively high. However, when
the number of users is much more than the number of
APs, the conflicts caused by the aggressive heuristic
offset its benefit, i.e., enabling more users (either
satisfied or unsatisfied) to connect to APs. We also
observe that the number of satisfied users in the
iterative heuristic is almost the same as that of the
optimal solutions. The reason is that the conservative
heuristic does not incur conflicts, and by repeatedly
running the conservative heuristic, it is highly possible
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Fig. 5. The experiment on the localized heuristics for the 1.5-hop user knowledge model.(a) Networks with low AP density.
(b) Networks with high AP density.
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Fig. 6. The experiment on all localized heuristics for both 0.5-knowledge model and the 1.5-hop user knowledge model.(a)
Networks with low AP density. (b) Networks with high AP density.

that each unoccupied AP will be connected by
one user, especially when the number of users is
large.

In the third experiment, the results of which
are shown in Figure 6, we select one or two
representative heuristics from each model and compare
their performances. Among the five heuristics, the
iterative heuristic in the 1.5-hop knowledge model has
the best performance, while the back-off heuristic in
the 0.5-hop knowledge model has the second to the
best performance. The performance difference between
these two heuristics is expected because the former
heuristic has more knowledge.

In the fourth experiment, we verify the approxima-
tion ratio of our one-round localized algorithm in the
case of homogeneous user demand by testing four
dimensions: the AP transmission range r, the number
of users m, the number of APs n, and the maximum AP
capacity c. The simulation result of the first dimension
(r) is shown in Figure 7(a), where m = 40, n = 30,
c = 2, and r increases from 10 to 100 in increments of
10. From this result, we observe that the performances
of our one-round localized algorithm and the optimal
solution increase quickly, as r increases from 10
to 30, and the ratio of the performances becomes
approximately a constant if r ≥ 40. The performance
of the greedy scheme reaches its maximum at r = 15,
and remains almost the same at r ≥ 30. The reason for
the short increments of performance is that the area
is not fully covered when 10 ≤ r ≤ 40, which in turn
incurs uncovered users. Therefore, we can conclude
that the AP transmission range has little effect on
the performance of the three algorithms when it is
greater than a threshold value, which is 40 in our
experiment.

The simulation result of the second dimension (m)
is shown in Figure 7(b), where r = 40, n = 20, c = 3,

and m increases from 10 to 150 in increments of 10.
From this result, we observe that the performance
of the greedy scheme decreases dramatically as
the number of users increases. This performance
decrement occurs before the entire network overloads.
The fundamental reason is that the greedy scheme
easily causes locally unbalanced loads, which in turn
decreases the performance of the entire network.
On the contrary, the performance of our one-round
localized algorithm becomes closer to that of the
optimal solution as the number of users increases. The
reason is that our one-round localized algorithm is
conflict-free, and the number of the empty AP-centered
Voronoi regions decreases as the number of users
increases.

The simulation result of the third dimension (n) is
shown in Figure 7(c), where r = 40, m = 80, c = 1,
and n increases from 10 to 150 in increments of 10.
From this result, we observe that the increment of
the number of APs increases the performances of all
three algorithms. That is because the increment of the
number of APs increases the network capacity. The
simulation result of the fourth dimension (c) is shown
in Figure 7(d), where r = 40, m = 80, n = 10, and c
increases from 1 to 15 in increments of 1. From this
result, we observe that the increment of the maximum
AP capacity can improve the performance of all three
algorithms.

In the fifth experiment, we compare the performance
of our one-round localized algorithm, our iterative
localized algorithm, and the optimal algorithm. The
simulation result is illustrated in Figure 8(a), where
n = 40, r = 100, c = 3, and m ranges from 10 to 150
in increments of 10. From this result, we can conclude
that the total load by our iterative algorithm is very
close to the optimal solution. From Figure 8(b), where
the parameters are the same as that of Figure 8(a),
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dimension. (c) AP number dimension. (d) AP capacity dimension.

except that c = 1, 2, and 3, we observe that the converge
rate of the iterative solution arrives its minimum (the
maximum number of rounds) when the total capacity
is equal to the total demand (the sum of demands of
all users) no matter what the value of AP capacity is.
The bigger the AP capacity, the slower the minimum
convergence rate associated with that AP capacity. The
reason is that fewer users can establish connection
when the total demand is equal to the total capacity.
We also evaluate the approximation ratio of the one-
round localized algorithm. The simulation result is
illustrated in Figure 8(c), where the parameters are
the same as that of Figure 8(b), we observe that
all the approximation ratios for the three different
capacities reach their minimum values when the total
capacity is equal to the total demand for different
AP capacity. The smaller the AP capacity, the lower
the minimum approximation ratio associated with that
AP capacity. Therefore, when c = 1 and the total
capacity is equal to the total demand, the approxi-
mation ratio is minimum, which is consistent with
Theorem 1.

In the sixth experiment, we consider the case where
users have heterogenous demands. We first compare
the performance of our one-round localized algorithm,
our iterative localized algorithm, and the upper bound
of the optimal solution, which is the minimum of the
total capacity and the total demand because the optimal
solution cannot be larger than the total capacity or the
total demand. The simulation result is illustrated in
Figure 8(d), where n = 20, r = 40, c = 6, maximum
user demand d = 3, and m ranges from 10 to 150
in increments of 10. This result testifies that our
localized algorithms maintain a good approximation
in the case of heterogenous demand. We then
evaluate the convergence rate of the iterative localized
algorithm. Figure 9(a) shows the simulation result,
which illustrates the fast convergence rate in terms of
the number of rounds. In the same parameter setting
as that of Figure 9(a), we also conduct the experiment
on the dynamic user population. We adopt the Poisson
process to simulate the inter-arrive time of users. The
simulation result shown in Figure 9(b) illustrates that
our result holds for dynamic user population either. In
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Fig. 8. Simulations on the performance comparison, approximation ratio for both homogenous demand and heterogenous demand.
(a) Performance comparison (homogenous demand). (b) Converge rate (homogenous demand). (c) Approximation ratio of the

one-round localized algorithm. (d) Performance comparison (heterogenous demand).

the same parameter setting, we conduct the experiment
on the normal distribution on user deployment. The
simulation result shown in Figure 9(c) illustrates
that the constant approximation ratio property of our
localized algorithms is not limited to the uniform user
distribution.

We also evaluate the performance under the
environment where interference is taken into account.
The simulation result is shown in Figure 9(d), where
the area size is 1000 × 1000, n = 10, r = 250, c =
11 Mbps, maximum user demand d = 1 Mbps, and
m ranges from 10 to 150 in increments of 10. The
simulation result illustrates that our localized algorithm
approximates to the optimal solution in performance
when the interference is considered.

7. Related Work

Currently, most of the IEEE 802.11 protocols adopt
the RSSI-based greedy approach to associate users
with APs. However, previous works [1–3] have

shown that the RSSI-based approach can lead to
poor performance through theoretical analysis and
experiment evaluations. The fundamental reason of
the poor performance is that the user load is often
distributed unevenly among APs by applying the
current AP selection strategy [6,7,13].

To address this problem, existing works [1–3,14,15]
have proposed numerous approaches. For example,
Bejerano, Han, and Li [2] took both load balance
and fairness into account by proposing a user-AP
association model. They proved the NP-completeness
of the proposed user-AP association problem, and
modeled the proposed problem as an instance of
LP. By utilizing the existing LP-based methods, they
designed approximation algorithms with a constant
approximation ratio. However, their model assumed
that a central node exists to execute the algorithms.

Hajiaghayi et al. [4] proposed a load balancing
mechanism, which is based on cell breathing, a well-
known concept in cellular telephony, to handle client
congestion in wireless LANs. They modeled the AP
association problem as a weighted matching problem
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Fig. 9. Simulation on the effect of dynamic user population, normal user distribution, and interference. (a) Converge rate
(heterogenous demand). (b) Dynamic user population. (c) Normal distribution. (d) Heterogenous user demand with interference.

in bipartite graph, and adopted the power control at the
AP side to balance the loads among APs. Their major
contributions are their solid analysis of the worst case
bounds, and the avoiding of the modification at the user
side. However, their algorithms are centralized, which
are suitable only for the type of wireless LANs, where
all APs are owned by the same entity.

Haidar et al. [16] proposed an AP association scheme
based on power management in order to minimize
the maximum congested AP. However, their scheme
needs the iterative execution of the Integer LP, the
time complexity of which is very high. Besides, they
did not analyze the convergence rate of their heuristic.
Vasudevan et al. [15] proposed a simple and easy-to-
implement method for AP selection in IEEE 802.11-
based wireless networks. In their scheme, end-users
make decisions as opposed to the APs. Each user
estimates the potential bandwidth of neighbor APs
by passive measurement and selects the AP with
the highest potential bandwidth to connect. Their
scheme is localized and does not require assistance
from the AP, but their scheme is only evaluated by
simulation. Papanikos and Logothetis [17] proposed

a load balancing heuristic that helps users to select
the AP to associate with based on the number of
users already associated with the AP and the mean
RSSI. However, they did not provide any analysis
to their heuristic. Mishra et al. [18] proposed an
client-based approach for channel assignment and load
balancing in 802.11-based WLANs that lead to better
usage of the wireless spectrum. Mishra et al. [19]
also considered distributed channel management in
uncoordinated wireless environments. Chen et al. [20]
proposed a solution to select APs during the handoff
process to achieve overall load balance.

All of solutions in the above works are essentially
various AP access control schemes. Most of these
approaches were evaluated through simulations or
experiments on test beds. To the best of our knowledge,
there are only two types of algorithms that provide
performance guarantees. One is based on the LP
approach [4], and the other is based on the simulated
annealing technique [5]. However, the LP-based
approach is centralized, which cannot adapt to the
self-organized wireless LANs. Although the simulated
annealing technique and the primal-dual scheme
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(derived from the LP) can be implemented in a
localized manner, both of them require the propagation
of global information and a large number of rounds
in order to converge. This is not desirable in an
environment with a highly dynamic user population.
Therefore, we propose a class of purely localized
algorithms, parts of which can provide performance
guarantees and do not require the propagation of
global information. Our previous works [21,22]
presented the preliminary idea of the proposed model
and solutions. In this work, we improve our work
by providing mathematical analysis and additional
simulations.

8. Conclusions

Existing solutions to the AP selection problem in
wireless LANs are either centralized algorithms
or localized heuristics without any performance
guarantees. In this work, we proposed a set of
localized algorithms to the AP selection problem,
and proved that several localized algorithms have
performance guarantees. We modeled the AP selection
problem as the many-to-one matching problem in
the bipartite graph. We first considered a special
case, the one-to-one bipartite matching, i.e., each
AP can support access for one user. In the one-to-
one bipartite matching model, we analyzed the effect
of the user knowledge and the timing of the AP
selection on the performance. We considered three
user knowledge models (0.5-hop knowledge, 1-hop
knowledge, and 1.5-hop knowledge) and two timing
strategies (simultaneous AP selection and sequential
AP selection). For each combination of the knowledge
model and the timing of selection, we proposed one
or two localized algorithms. Through mathematical
analysis, we proved that a constant approximation ratio,
in terms of average total load, exists if users have
knowledge on whether they are the best users of their
best APs. We also extended the localized algorithm
through iterative executions, and proved that a bound
exists for the convergence rate. We also considered
various practical issues such as interference, power
adjustment, dynamic user population, as well as non-
uniform AP and user distributions. Through extensive
simulations, we verified that our localized algorithms
display good performance under various conditions. In
the future, we will conduct an analytical study on our
localized algorithms in non-uniform distributions. We
will also extend our work to the case in which each AP
has multiple channels.
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Appendix

Proof of Theorem 1

Proof. Without loss of generality, we construct the
deployment of users and APs as follows: we first
randomly deploy all APs within a coverage area,
construct the Voronoi graph with all APs as Voronoi
points, and then randomly deploy users one by one.
Since APs are identical (in terms of the location
distribution in the coverage area), the expected area
sizes of all Voronoi regions should be the same. Note
that the expected area size of an AP is independent of
its capacity. Therefore, the probability for a user to be
deployed in any Voronoi region should be the same,
which is equal to 1

n
, where n is the number of APs.

Based on this deployment of users and APs, we have
the following lemma.

Lemma 1. If m ≤ n, the deployment of the ith AP can
on average increase the non-empty Voronoi regions by
(1 − 1

n
)i−1.

Proof. We can prove the lemma by induction over
the number of APs. For the basis, the first AP can
add one non-empty Voronoi region, which satisfies
(1 − 1

n
)1−1 = 1. The second AP can additionally

add (1 − 1
n

) non-empty Voronoi region because the
probability, with which the second AP is not in the
same Voronoi region as the first AP is (1 − 1

n
).

For the inductive step, we assume that the kth AP ad-
ditionally adds (1 − 1

n
)k−1 non-empty Voronoi region.

We use Xi
n(k)(1 ≤ i ≤ k) to represent the probability

that k APs are in i different Voronoi regions. If k − 1
APs have already been deployed in i different Voronoi
regions, the conditional probability that the kth AP is
deployed in one of the empty Voronoi regions is 1 − i

n
.

Note that it is the only way that the kth AP can introduce
the new non-empty Voronoi region under that con-
dition. Therefore, the additional non-empty Voronoi
region added by the kth AP can be represented by

k−1∑
i=1

Xi
n(k − 1)

(
1 − i

n

)
=

(
1 − 1

n

)k−1

(1)
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We also observe that the case of k APs being in i
different Voronoi regions comes from two sources:
(1) k − 1 APs have already been deployed in i − 1
different Voronoi regions, and the kth AP is deployed
in an empty Voronoi region (a Voronoi region other
than those i − 1 Voronoi regions); (2) k − 1 APs have
already been deployed in i different Voronoi regions,
the kth AP is deployed in one of the non-empty Voronoi
regions (those i Voronoi regions). Thus, we can derive
the following equation.

Xi
n(k) =




Xi
n(k − 1) · i

n
i = 1

Xi−1
n (k − 1) · (1 − i−1

n
) + Xi

n(k − 1) · i
n
, 1 < i < k

Xi−1
n (k − 1) · (1 − i−1

n
) i = k

With the same argument, the additional non-empty
Voronoi region introduced by the kth AP is

k∑
i=1

Xi
n(k)

(
1 − i

n

)

=
k∑

i=2

[
Xi−1

n (k − 1) · i − 1

n
·
(

1 − i − 1

n

)

+ Xi−1
n (k − 1)

(
1 − i − 1

n

) (
1 − i

n

) ]

=
(

1 − 1

n

)
·

k−1∑
i=1

Xi
n(k − 1)

(
1 − i

n

)

By combining the above equation with Equation (1),
we derive

k∑
i=1

Xi
n(k)

(
1 − i

n

)
=

(
1 − 1

n

)k

Therefore, the k + 1th AP additionally adds (1 −
1
n

)k non-empty Voronoi regions, which verifies our
induction assumption. �

Based on this lemma, if m ≤ n, the expected
number of satisfied users by our heuristic is
exactly H = ∑m

i=1(1 − 1
n

)i−1 = n × (1 − (1 − 1
n

)m).
Since the maximum number of satisfied users by the
optimal solution is at most m in the case of m ≤ n,
the average approximation ratio of our heuristic to
the optimal solution in the case of m ≤ n is at least
n
m

× (1 − (1 − 1
n

)m).
If m > n, the average increment of the non-empty

Voronoi regions through the ith AP (i > n) is less

than 1
(1−n)i−1 , but it is still increasing. Hence, the

expected satisfied users in the case of m > n is more
than

∑n
i=1

1
(1−n)i−1 = n × (1 − (1 − 1

n
)n). In this case,

the maximum number of satisfied users is at most n.
Therefore, the expected approximation ratio is also
more than 1 − (1 − 1

n
)n. We can prove n

m
× (1 −

(1 − 1
n

)m) ≥ 1 − (1 − 1
n

)n for any m ≤ n. Therefore,
combining the above two cases, we can conclude
that the approximation ratio of our heuristic is 1 −
(1 − 1

n
)n. Since (1 − 1

n
)n is strictly increasing, and

(1 − 1
n

)n → 1
e

as n → ∞, the minimum value of the
approximation ratio is 1 − 1

e
. Hence, the lower bound

of the approximation ratio is 1 − 1
e
. This theorem is

thusly proved. �

Proof of Theorem 2

Proof. The basic idea of this proof stems from our
experimental study on the approximation ratio. As
shown in Figure 8(c), the approximation ratio reaches
its minimum in all the three capacities when the
total demand (the number of users) is equal to the
total capacity. Moreover, among the three minimum
approximation ratios, the smaller the capacity, the
smaller the corresponding approximation ratio. If the
above properties hold, the approximation ratio should
reach its minimum when all APs have unit capacity and
the number of users equals to the total capacity.

To prove the above conjecture, we first need to
calculate the expected number of users whose demands
are satisfied. To do so, we first consider the expected
number of users Eu(a) that are deployed in a given
Voronoi region R(a), where a represents the AP in that
region. To derive the expression of Eu(a), we need to
introduce two notations.

First, we use pn(i, j) (0 ≤ i ≤ m) to represent the
probability that j units of a’s capacity are occupied
(exactly j users in R(a)) after the deployment of the ith
user, where m is the number of users. pn(i, j) comes
from two sources: (1) j of the first i − 1 users have
already been deployed in R(a), and the ith user is not
deployed in R(a); (2) j − 1 of the first i − 1 users
have already been deployed in R(a), and the ith user is
deployed in R(a). Hence, we can derive the following
recursive expression:

pn(i, j) =
(

1 − 1

n

)
pn(i − 1, j) + 1

n
pn(i − 1, j − 1)

(2)

with pn(0, 0) = 1 and pn(i, j) = 0 if j > i or j < 0.
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Table I. The illustration of y(i, j).

1 y(1, 1)
2 y(2, 2) y(2, 1)
3 y(3, 3) y(3, 2) y(3, 1)
... · · ·

...
...

...
m y(m, m) · · · · · · · · · y(m, 1)

Second, we use y(i, j) to represent the event that
the ith user is deployed in R(a), given the conditional
probability pn(i − 1, j − 1), i.e., y(i, j) = 1

n
pn

(i − 1, j − 1) (1 ≤ i ≤ m). Combining this definition
and Equation (2), the following equation is
straightforward

y(i, j) =
(

1 − 1

n

)
y(i − 1, j) + 1

n
y(i − 1, j − 1)

(3)

with y(1, 1) = 1
n

and y(i, j) = 0 if j > i or j < 1.
y(i, j) reflects the probability that the ith user
deployment fills jth unit of a’s capacity, as illustrated
in Table I, where the ith row (counted from top to
bottom) represents the ith user deployment, and the jth
column (counted from right to left) represents the jth
unit of a’s capacity.

∑i
j=1 y(i, j), the sum of the ith row

in Table I, represents the probability that the ith user is
deployed in R(a). Hence, Eu(a) = ∑m

i=1
∑i

j=1 y(i, j),
the sum of all rows, represents the expected number
of users deployed in R(a).

Through different orders of sum of Eu(a), we can
obtain

Eu(a) =
m∑

i=1

i∑
j=1

y(i, j) =
m∑

j=1

m∑
i=j

y(i, j) =
m∑

j=1

Lj(m)

where we define Lj(m) = ∑m
i=j y(i, j), i.e., the sum of

jth column in Table I. Since each AP has a capacity
constraint C(a), the expected number of users that can
connect to a is

∑C(a)
j=1 Lj(m). Before we prove the main

properties, we need the following lemmas.

Lemma 2. y(i, j) = 1
nj (1 − 1

n
)i−jC

j−1
i−1 where C

j−1
i−1

is binomial coefficient.

Proof. This lemma can be proved through
induction on j. For the inductive basis, y(1, 1) = 1

n
satisfies the above equation. For the inductive step,
we assume that y(i − 1, j) = 1

nj (1 − 1
n

)i−j−1C
j−1
i−2 and

y(i − 1, j − 1) = 1
nj−1 (1 − 1

n
)i−jC

j−2
i−2 . By applying

Formula (3), and exploring the fact that Ck
r = Ck

r−1 +
Ck−1

r−1 , we can complete the inductive step. The lemma
is thusly proved. �

Lemma 3. Lj(m) = Lj−1(m) − (1− 1
n

)m−j+1

nj−1 C
j−1
m

where 2 ≤ j ≤ m, and L1(m) = 1 − (1 − 1
n

)m.

Proof. From the definition of Lj(m) and Lemma

2, we have Lj(m) = 1
nj

∑m
i=j(1 − 1

n
)i−jC

j−1
i−1 .

Therefore, Lj(m)
n

= Lj(m) − (1 − 1
n

)Lj(m) = 1
nj

[nj−1Lj−1(m) − (1 − 1
n

)m−j+1C
j−1
m ]. By multiplying

n on both sides of the above equation, we
derive the recursive expression of Lj(m). Since

y(m + 1, j) = (1− 1
n

)m−j+1

nj C
j−1
m . The recursive

expression can also be written as Lj(m) = Lj−1(m)
− ny(m + 1, j). We also have L1(m) =∑m

i=1
1
n

(1 − 1
n

)i−1 = 1 − (1 − 1
n

)m. This lemma
is thusly proved. �

Lemma 4.
∑l

j=1 y(i, j) ≤ ∑l
j=1 y(i − 1, j).

Proof. By applying Equation (3), we have∑l
j=1 y(i, j) = ∑l

j=1 ( 1
n

y(i − 1, j − 1) + (1 − 1
n

)
y(i − 1, j)). Because y(i − 1, 0) = 0 according to
the definition, we have

∑l
j=1 y(i, j) = ∑l−1

j=1 y(i −
1, j) + (1 − 1

n
)y(i − 1, l) ≤ ∑l

j=1 y(i − 1, j). �

As a direct application of Lemma 4, we have

C∑
j=1

y(i, j) ≤
C∑

j=1

y(q, j), 1 ≤ q < i (4)

Lemma 5.
∑l

j=1 Lj(m) ≥ m
∑l

j=1 y(m + 1, j).

Proof. Because
∑l

j=1 Lj(m) = ∑l
j=1

∑m
i=1

y(i, j) = ∑m
i=1

∑l
j=1 y(i, j) ≤ ∑m

i=1
∑l

j=1 y(m +
1, j) = m

∑l
j=1 y(m + 1, j) where the inequality

holds according to Inequality (4), we can derive this
lemma directly. �

Without loss of generality, we assume that the
maximum AP capacity is C, and there are kl APs with
capacity l. Hence,

∑C
l=1 kl = n and the total capacity

X = ∑C
l=1 lkl. The expected number of users that can

connect to an AP with capacity l is
∑l

j=1 Lj(m),
which is also the expected load on the AP since
all users have unit demand. Since the expected
loads on any two APs are independent, the total
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expected load is
∑C

l=1 kl

∑l
j=1 Lj(m). Because the

optimal solution cannot exceed the total capacity or
the total demand (the total number of users in the
case of homogenous demand), the upper bound of
the optimal solution is the minimum of the total
capacity and the total demand. Therefore, the lower
bound of the approximation ratio can be defined as a
function

f (m) =




∑C

l=1
kl

∑l

j=1
Lj(m)

m
, m ≤ X∑C

l=1
kl

∑l

j=1
Lj(m)

X
, m ≥ X

Lemma 6. f (m) ≥ f (m + 1), m + 1 ≤ X.

Proof. To prove the lemma, it is equal to prove
kl

∑l

j=1
Lj(m)

m
≥ kl

∑l

j=1
Lj(m+1)

m+1 for l = 1, . . . , C,

which is equal to (m + 1)
∑l

j=1 Lj(m) ≥
m

∑l
j=1 Lj(m + 1). By applying Lemma 5 and

the equation Lj(m + 1) = Lj(m) + y(m + 1, j), we
can prove this lemma. �

Since Lj(m) is non-decreasing as m increases,
the numerator of f (m) in the case of m ≥ X is
non-decreasing as m increases. Hence, f (m) is non-
decreasing when m ≥ X because the denominator of
f (m) in the case of m ≥ X does not change as m
increases. From Lemma 6, we can conclude thatf (m) is
non-increasing when m ≤ X. Therefore, minm f (m) =
f (X) if the total capacity is X.

Lemma 7. L1(n) ≤ f (X).

Proof. To prove the above inequality, it is
equal to prove XL1(n) ≤ ∑C

l=1 kl

∑l
j=1 Lj(x). Since

X = ∑C
l=1 kll, the above inequality is equal to

kllL1(n) ≤ kl

∑l
j=1 Lj(X) (l = 1, . . . , C), which is

equal to lL1(n) ≤ ∑l
j=1 Lj(X) (l = 1, . . . , C). The

last inequality can be derived by applying Lemma 4
recursively. Thus, this lemma is proved. �

Note that L1(n) = nL1(n)
n

is the minimum approx-
imation ratio in the case that all APs have unit
capacity. Thus, Lemma 7 implies that the lowest
approximation ratio is L1(n), which is 1 − (1 − 1

n
)n

by Lemma 3. Since (1 − 1
n

)n is strictly increasing, and
(1 − 1

n
)n → 1

e
as n → ∞, the minimum value of the

approximation ratio is 1 − 1
e
. Hence, the lower bound

of the approximation ratio is 1 − 1
e
. This theorem is

thusly proved. �

Proof of Theorem 3

Proof. We first consider the case that m ≤ n. Based
on the analysis of Theorem 1, we observe that at least
(1 − 1

e
) × m users are connected after the first round.

Hence, the number of unconnected users is at most
1
e

× m. Among the unconnected users, we use di
u to

denote the number of unconnected users that cannot
be covered by any AP after the ith round, and ri

u to
denote the number of the unconnected users except
those uncovered users. Assume that the number of
rounds is k. We have the following inequality:

ri
u ≤ ri

u + di
u ≤ 1

e
× ri−1

u , 1 ≤ i ≤ k (5)

Combining rk
u ≥ 1 and Formula (5), we can

conclude that 1 ≤ ( 1
e
)k × m. Note that r0

u = m.
Therefore, we have k ≤ ln m. For the case where m ≥
n, at least (1 − 1

e
) × n users are connected after the first

round. Similarly, we can derive k ≤ ln n. Therefore, we
have k ≤ ln l. �
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